普利姆算法(加点法)求最小生成树
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Document</title> </head> <body> <script> function Node(value) { this.value = value; this.neighbor = []; this.distance = []; } var nodeA = new Node("a"); var nodeB = new Node("b"); var nodeC = new Node("c"); var nodeD = new Node("d"); var nodeE = new Node("e"); var nodeF = new Node("f"); var nodeG = new Node("g"); var nodeH = new Node("h"); //存放所有节点的数组 var pointSet = [nodeA, nodeB, nodeC, nodeD, nodeE, nodeF, nodeG, nodeH]; var max = Number.POSITIVE_INFINITY; //无穷大 var distance = [ //点与点之间的距离 // a b c d e f g h [0, 1, 2, max, max, max, max, max], //a [1, 0, max, 3, max, 5, max, max], //b [2, max, 0, 4, max, max, 7, max], //c [max, 3, 4, 0, 6, max, max, max], //d [max, max, max, 6, 0, 8, 9, max], //e [max, 5, max, max, 8, 0, max, 10], //f [max, max, 7, max, 9, max, 0, 11], //g [max, max, max, max, max, 10, 11, 0] //h ]; //prim算法 function prim(pointSet, distance, start) { var nowPointSet = []; nowPointSet.push(start);//将开始节点放入已连接数组中 while (true) { //通过已连接节点,找到和它们相连接开销最小的节点 var minDistanceNode = getMinDistanceNode(pointSet, distance, nowPointSet); nowPointSet.push(minDistanceNode);//将开销最小的节点加入已连接数组中 if(nowPointSet.length == pointSet.length) break;//所有节点都连接,跳出循环 } console.log(nowPointSet); } function getMinDistanceNode(pointSet, distance, nowPointSet) { for (var i = 0; i < nowPointSet.length; i++) { //遍历已连接的点 var pointIndex = getIndex(nowPointSet[i].value);//获取已连接节点在pointSet中的索引值 var pointDistance = distance[pointIndex];//通过pointIndex找到该连接节点对应所有边的开销 var minDistance = max;//最小距离默认为max var fromNode = null;//起始节点 var endNode = null;//终止节点 for (var j = 0; j < pointDistance.length; j++) { //遍历所有边的开销 if (nowPointSet.indexOf(pointSet[j]) < 0 && pointDistance[j] < minDistance) { //最小距离连接的节点不能在nowPointSet中 && 要小于minDistance minDistance = pointDistance[j]; fromNode = nowPointSet[i]; endNode = pointSet[j]; } } } fromNode.neighbor.push(endNode);//起始节点 将开销最小的节点加入 fromNode.distance.push({//起始节点 将开销最小的节点的值和距离加入 from: fromNode.value, to: endNode.value, distance: minDistance }); endNode.neighbor.push(fromNode); endNode.distance.push({ from: fromNode.value, to: endNode.value, distance: minDistance }); return endNode;//返回开销最小的节点 } function getIndex(str) {//获取索引值 for (var i = 0; i < pointSet.length; i++) { if (str == pointSet[i].value) { return i; } } return -1; } prim(pointSet, distance, pointSet[2]); </script> </body> </html>
普利姆算法
1.《9.普利姆算法求最小生成树(JavaScript版)》援引自互联网,旨在传递更多网络信息知识,仅代表作者本人观点,与本网站无关,侵删请联系页脚下方联系方式。
2.《9.普利姆算法求最小生成树(JavaScript版)》仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证。
3.文章转载时请保留本站内容来源地址,https://www.cxvn.com/study/26718.html